CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

LECTURE ??, FALL 2012

TOPICS TODAY

- Example: Sequence Detector
- Finite State Machine Simplification
 - Circuit Minimization
 - State Reduction
 - State Assignment
 - Choice of Flip Flop

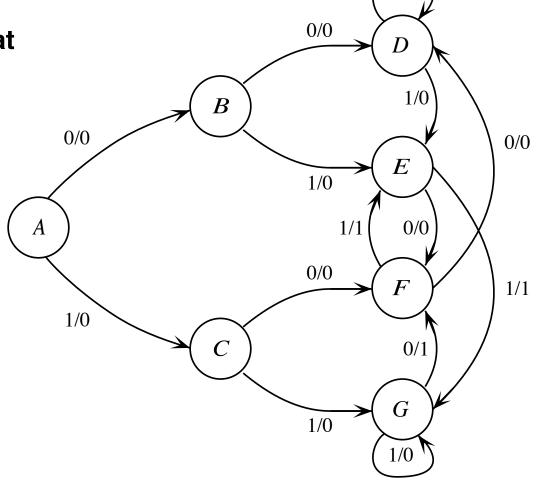
EXAMPLE: SEQUENCE DETECTOR

Example: A Sequence Detector

- Example: Design a machine that outputs a 1 when exactly two of the last three inputs are 1.
- e.g. input sequence of 011011100 produces an output sequence of 001111010.
- Assume input is a 1-bit serial line.
- Use D flip-flops and 8-to-1 Multiplexers.
- Start by constructing a state transition diagram (next slide).

Sequence Detector State Transition Diagram

 Design a machine that outputs a 1 when exactly two of the last three inputs are 1.



Sequence Detector State Table

Input	X
Present state	0 1
A	<i>B</i> /0 <i>C</i> /0
B	D/0 $E/0$
C	F/0 $G/0$
D	D/0 $E/0$
E	F/0 $G/1$
F	D/0 $E/1$
G	F/1 $G/0$

Sequence Detector State Assignment

Input		X
Present state	0	1
$S_2S_1S_0$ $A: 000$ $B: 001$ $C: 010$ $D: 011$ $E: 100$ $F: 101$ $G: 110$	S ₂ S ₁ S ₀ Z 001/0 011/0 101/0 011/0 101/0 011/0 101/1	\$2\$1\$0Z 010/0 100/0 110/0 100/0 110/1 100/1 110/0

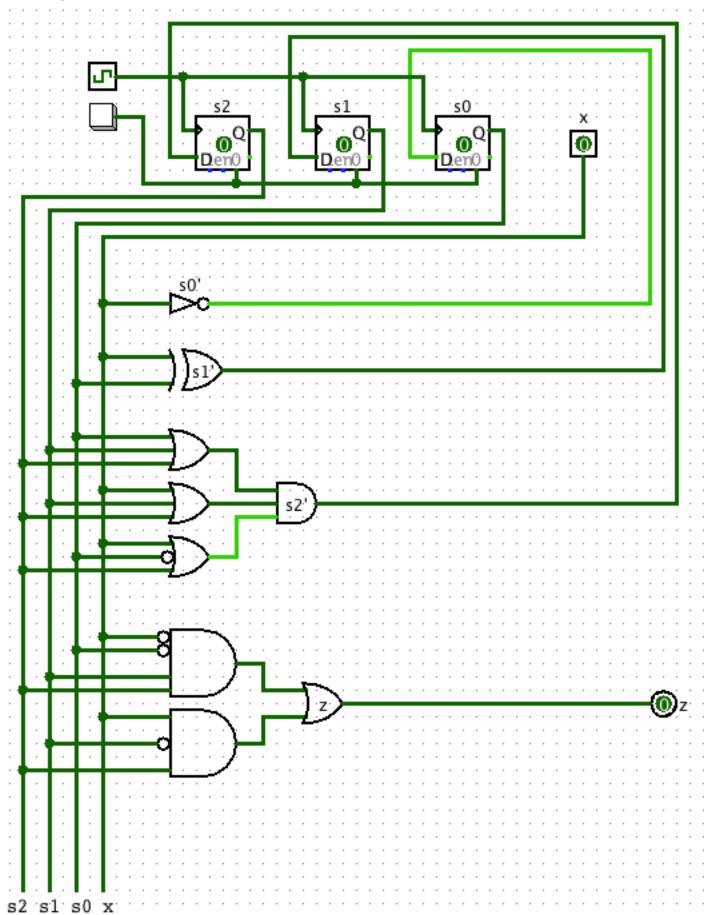
(a)

Input and Next state state at and output at time *t* time *t*+1

s_2	s_1	s_0	x	$s_2 s_1 s_0 z$
0	0	0	0	0 0 1 0
0	0	ŏ	1	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
0	0	1	0	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$
ő	0	1	1	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
0	1	0	0	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$
0	1	0	1	1 1 0 0
0	1	1	0	$\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$
0	1	1	1	1 0 0 0
1	0	0	0	1010
1	0	0	1	1 1 0 1
1	0	1	0	0 1 1 0
1	0	1	1	1 0 0 1
1	1	0	0	1 0 1 1
1	1	0	1	1 1 0 0
1	1	1	0	d d d d
1	1	1	1	d d d d

(b)

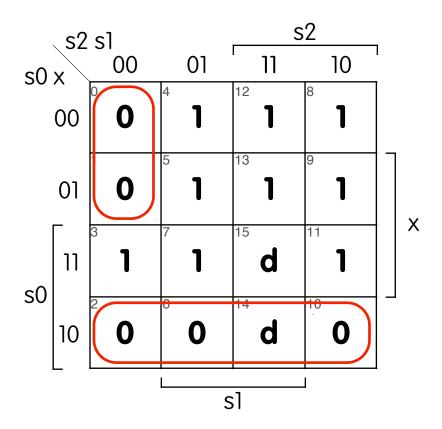
Output 1 when EXACTLY two of last three bits are 1



FINITE STATE MACHINE SIMPLIFICATION

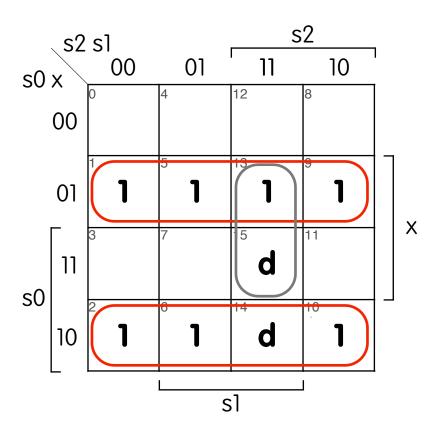
CIRCUIT MINIMIZATION

	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d



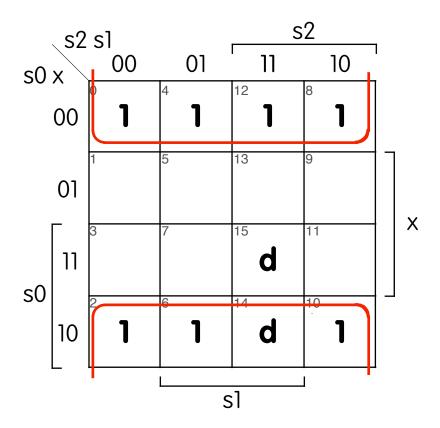
$$s2' = (\overline{s0} + x)(s2 + s1 + s0)$$

	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d



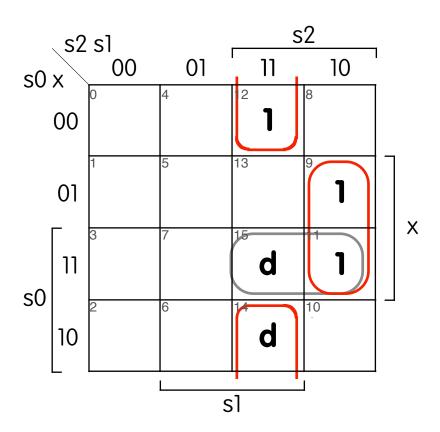
$$s1' = \overline{s0} x + s0 \overline{x} = s0 xor x$$

	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d



$$s0' = \bar{x}$$

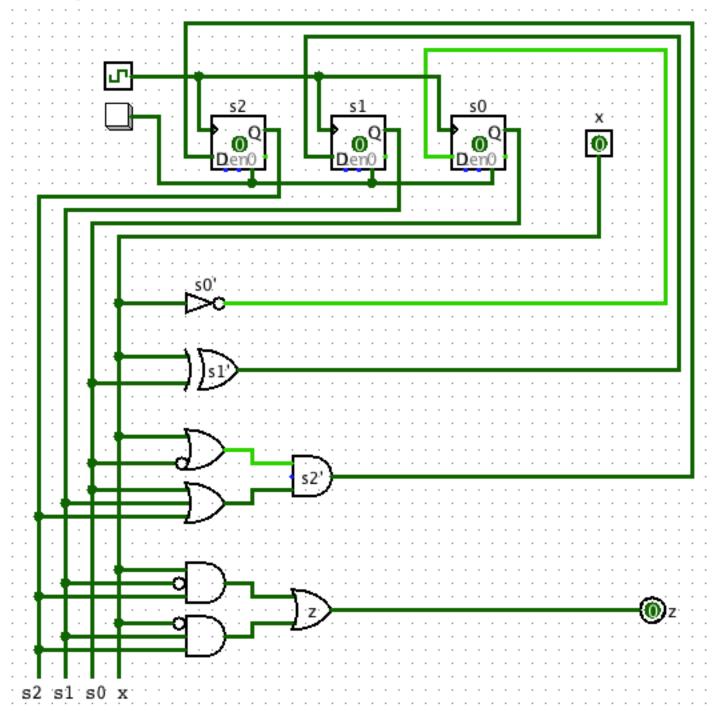
	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d



$$z = s2 \overline{s1} x + s2 s1 \overline{x}$$

Sequence Dectector (optimized)

Output 1 when EXACTLY two of last three bits are 1



Notes on K-maps

- Also works for POS
- Takes 2ⁿ time for formulas with n variables
- Only optimizes two-level logic
 - Reduces number of terms, then number of literals in each term
- Assumes inverters are free
- Does not consider minimizations across functions
- Circuit minimization is generally a hard problem
- Quine-McCluskey can be used with more variables
- CAD tools are available if you are serious

Karnaugh Maps

- Implicant: rectangle with 1, 2, 4, 8, 16 ... 1's
- Prime Implicant: an implicant that cannot be extended into a larger implicant
- Essential Prime Implicant: the only prime implicant that covers some 1
- K-map Algorithm (not from M&H):
 - 1. Find ALL the prime implicants. Be sure to check every 1 and to use don't cares.
 - 2. Include all essential prime implicants.
 - 3. Try all possibilities to find the minimum cover for the remaining 1's.

Circuit Minimization is Hard

- Unix systems store passwords in encrypted form.
 - User types in x, system computes f(x) and looks for f(x) in a file.
- Suppose we us 64-bit passwords and I want to find the password x, such that f(x) = y. Let

 $g_i(x) = 0$ if f(x) = y and the ith bit of x is 0 1 otherwise.

- If the ith bit of x is 1, then g_i(x) outputs 1 for every x and has a very, very simple circuit.
- If you can simplify every circuit quickly, then you can crack passwords quickly.

Simplifying Finite State Machines

- State Reduction: equivalent FSM with fewer states
- State Assignment: choose an assignment of bit patterns to states (e.g., A is 010) that results in a smaller circuit
- Choice of flip-flops: use D flip-flops, J-K flip-flops or a T flip-flops? a good choice could lead to simpler circuits.

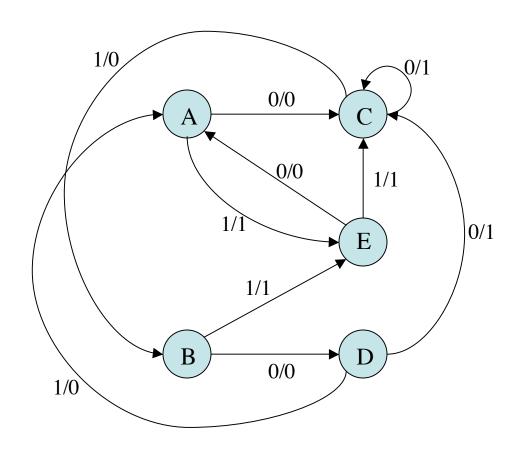
STATE REDUCTION

State Reduction

• Description of state machine M_0 to be reduced.

Input		X
Present state	0	1
A	C/0	E/1
B	D/0	E/1
C	C /1	B/0
D	C /1	A/0
E	A/0	C /1

State Reduction Example: original transition diagram

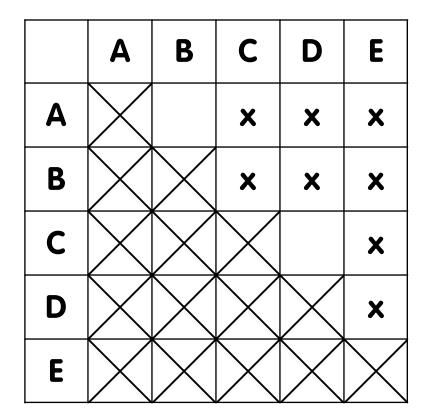


State Reduction Algorithm

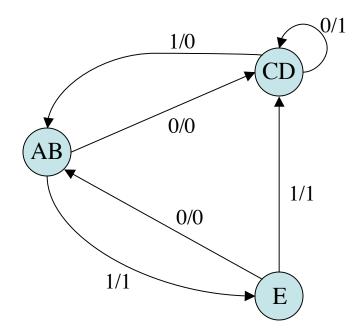
- 1. Use a 2-dimensional table an entry for each pair of states.
- 2. Two states are "distinguished" if:
 - a. States X and Y of a finite state machine M are distinguished if there exists an input r such that the output of M in state X reading input r is different from the output of M in state Y reading input r.
 - b. States X and Y of a finite state machine are distinguished if there exists an input r such that M in state X reading input r goes to state X', M in state Y reading input r goes to state Y' and we already know that X' and Y' are distinguished states.
- 3. For each pair (X,Y), check if X and Y are distinguished using the definition above.
- 4. At the end of the algorithm, states that are not found to be distinguished are in fact equivalent.

State Reduction Table

- An x entry indicates that the pair of states are known to be distinguished.
- A & B are equivalent, C & D are equivalent



State Reduction Example: reduced transition diagram



State Reduction Algorithm Performance

- As stated, the algorithm takes O(n⁴) time for a FSM with n states, because each pass takes O(n²) time and we make at most O(n²) passes.
- A more clever implementation takes O(n²) time.
- The algorithm produces a FSM with the fewest number states possible.
- Performance and correctness can be proven.

STATE ASSIGNMENT

The State Assignment Problem

• Two state assignments for machine M_2 .

Input	2	Y
P.S.	0	1
A	<i>B</i> /1	<i>A</i> /1
В	<i>C</i> /0	<i>D</i> /1
C	<i>C</i> /0	<i>D</i> /0
D	<i>B</i> /1	A/0

Machine M_2

Input	X
S_0S_1	0 1
A: 00	01/1 00/1
B: 01	10/0 11/1
<i>C</i> : 10	10/0 11/0
D: 11	01/1 00/0

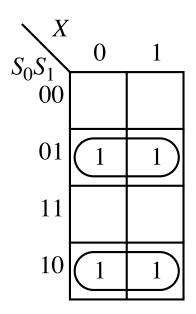
State assignment SA_0

Input	X
S_0S_1	0 1
A: 00	01/1 00/1
B: 01	11/0 10/1
<i>C</i> : 11	11/0 10/0
D: 10	01/1 00/0

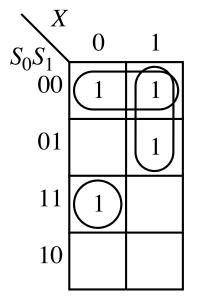
State assignment SA_1

State Assignment SA_n

• Boolean equations for machine M_2 using state assignment SA_0 .







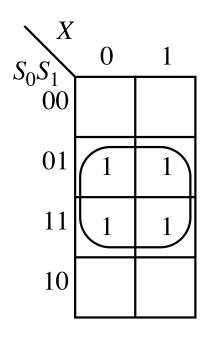
$$S_0 = \overline{S_0}S_1 + S_0\overline{S_1}$$

$$S_0 = \overline{S_0}S_1 + S_0\overline{S_1} \qquad S_1 = \overline{S_0}\overline{S_1}\overline{X} + \overline{S_0}S_1X \qquad Z = \overline{S_0}\overline{S_1} + \overline{S_0}X + S_0S_1\overline{X} + S_0S_1\overline{X} \qquad + S_0S_1\overline{X}$$

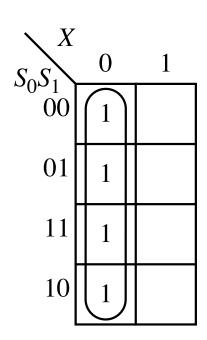
$$Z = \overline{S_0}\overline{S_1} + \overline{S_0}X + S_0S_1\overline{X}$$

State Assignment SA₁

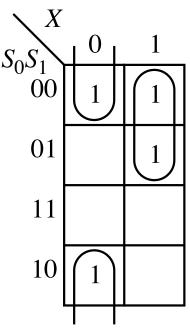
• Boolean equations for machine M_2 using state assignment SA_1 .



$$S_0 = S_1$$



$$S_1 = \bar{X}$$



$$Z = \overline{S_1}\overline{X} + \overline{S_0}X$$

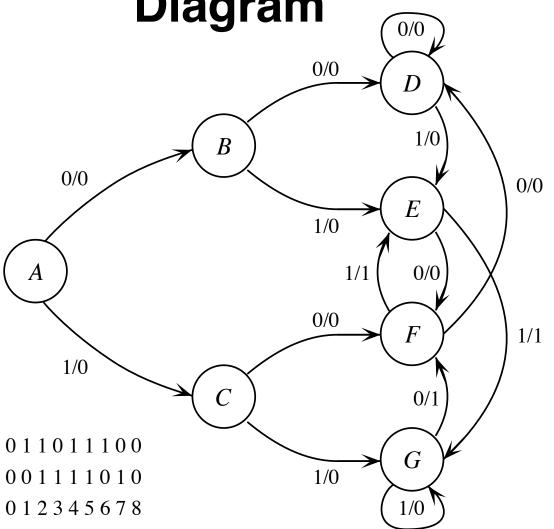
State Assignment Heuristics

- No known efficient alg. for best state assignment
- Some heuristics (rules of thumb):
 - The initial state should be simple to reset all zeroes or all ones.
 - Minimize the number of state variables that change on each transition.
 - Maximize the number of state variables that don't change on each transition.
 - Exploit symmetries in the state diagram.
 - If there are unused states (when the number of states s is not a power of 2), choose the unused state variable combinations carefully. (Don't just use the first s combination of state variables.)
 - Decompose the set of state variables into bits or fields that have well-defined meaning with respect to the input or output behavior.
 - Consider using more than the minimum number of states to achieve the objectives above.

APPLY STATE REDUCTION & STATE ASSIGNMENT TO SEQUENCE DETECTOR

B-35

Sequence Detector State Transition Diagram



Principles of Computer Architecture by M. Murdocca and V. Heuring

Input:

Time:

Output:

© 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

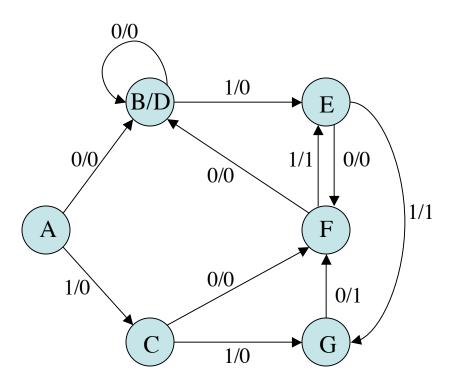
Input	X
Present state	0 1
A	B/0 C/0
B	D/0 $E/0$
C	F/0 $G/0$
D	D/0 $E/0$
E	F/0 $G/1$
F	D/0 $E/1$
G	F/1 $G/0$

Sequence Detector State Reduction Table

	A	В	С	D	E	F	G
A	X	×	×	X	×	X	×
В	X	\times	×		×	×	×
С	X	\times	\times	×	×	×	×
D	X	\times	\times	\times	×	×	×
E	X	\times	\times	\times	\times	×	×
F		X	X	X	\times	X	×
G	X	X	X	X	X	X	X

Sequence Detector Reduced State Table

Input Present state	<i>X</i> 0 1
A: A' BD: B' C: C' E: D' F: E' G: F'	B'/0 C'/0 B'/0 D'/0 E'/0 F'/0 E'/0 F'/1 B'/0 D'/1 E'/1 F'/0

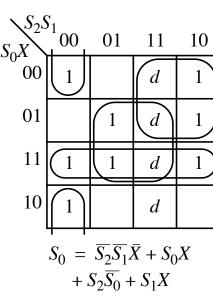


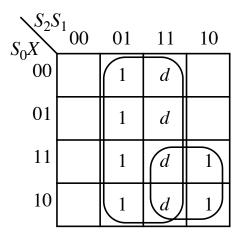
Sequence Detector State Assignment

Input	X
Present state	0 1
$S_2S_1S_0$	$S_2S_1S_0Z$ $S_2S_1S_0Z$
A': 000	001/0 010/0
B': 001	001/0 011/0
C': 010	100/0 101/0
D': 011	100/0 101/1
E': 100	001/0 011/1
F': 101	100/1 101/0
D': 011 E': 100	100/0 101/1 001/0 011/1

Sequence Detector K-Maps

 K-map reduction of next state and output functions for sequence detector.

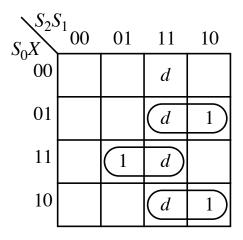




$$S_2 = S_2 S_0 + S_1$$

S_2S_3	G ₁ 00	01	11	10
S_0X 00			d	
01	1		d	1
11	1		d	
10			d	

$$S_1 = \overline{S_2} \overline{S_1} X + S_2 \overline{S_0} X$$



$$Z = S_2 \overline{S_0} X + S_1 S_0 X + S_2 S_0 \overline{X}$$

Improved Sequence Detector?

Formulas from the 7-state FSM:

$$s2' = (\overline{s0} + x) (s2 + s1 + s0)$$

$$s1' = \overline{s0} x + s0 \overline{x} = s0 xor x$$

$$s0' = \overline{x}$$

$$z = s2 \overline{s1} x + s2 s1 \overline{x}$$

Formulas from the 6-state FSM:

$$s2' = s2 s0 + s1$$

$$s1' = \overline{s2} \overline{s1} x + s2 \overline{s0} x$$

$$s0' = \overline{s2} \overline{s1} \overline{x} + s0 x + s2 \overline{s0} + s1 x$$

$$z = s2 \overline{s0} x + s1 s0 x + s2 s0 \overline{x}$$

Sequence Detector State Assignment

7-state

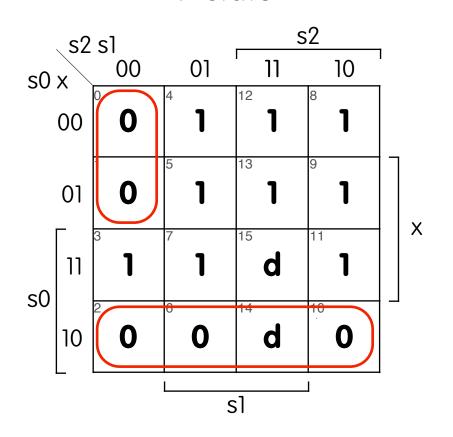
	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d

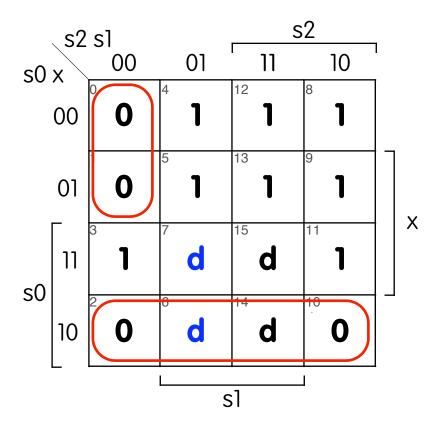
$$A = 000$$
 $E = 100$ $B = 001$ $F = 101$ $C = 010$ $G = 110$ $D = 011$

		s2	s1	s0	X	s2'	s1'	s0'	Z
	О	0	0	0	0	0	0	1	0
	1	0	0	0	1	0	1	0	0
2	2	0	0	1	0	0	0	1	0
3	3	0	0	1	1	1	0	0	0
4	4	0	1	0	0	1	0	1	0
į	5	0	1	0	1	1	1	0	0
	6	0	1	1	0	d	d	d	d
-	7	0	1	1	1	d	d	d	d
8	8	1	0	0	0	1	0	1	0
9	9	1	0	0	1	1	1	0	1
10	Э	1	0	1	0	0	0	1	0
1	1	1	0	1	1	1	0	0	1
12	2	1	1	0	0	1	0	1	1
13	3	1	1	0	1	1	1	0	0
14	4	1	1	1	0	d	d	d	d
1!	5	1	1	1	1	d	d	d	d

$$A = 000$$
 $E = 100$ $B/D = 001$ $F = 101$ $C = 010$ $G = 110$

7-state





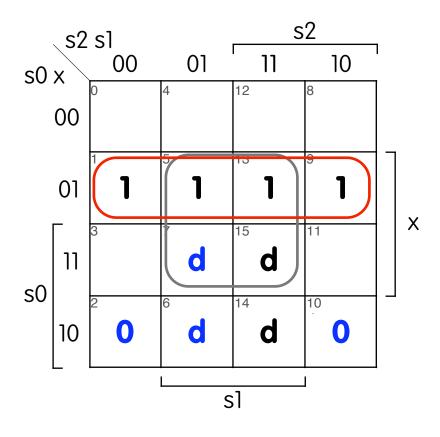
$$s2' = (\overline{s0} + x)(s2 + s1 + s0)$$
 $s2' = (\overline{s0} + x)(s2 + s1 + s0)$

$$s2' = (\overline{s0} + x)(s2 + s1 + s0)$$

7-state

/-Sidi

s2 s2 s1 10 00 01 11 s0 x 12 00 01 Χ d 11 s0 d 10 sl

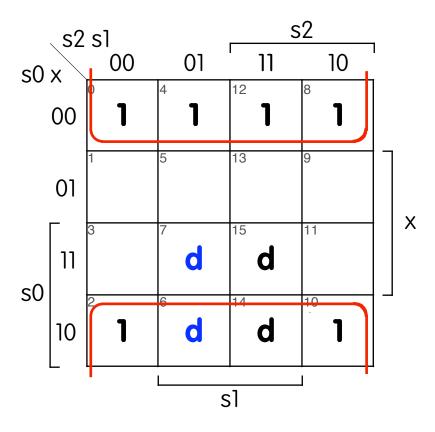


$$s1' = \overline{s0} \times + s0 \overline{x}$$

$$s1' = \overline{s0} x$$

7-state

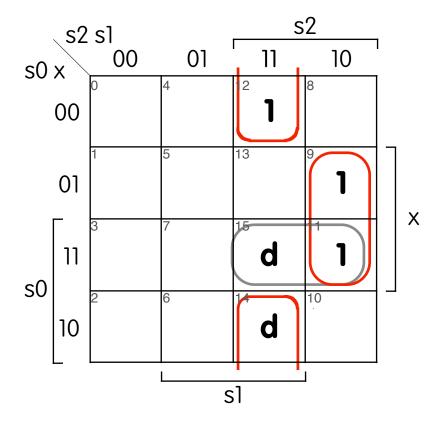
s2 s2 s1 10 00 01 11 s0 x 12 00 01 X d s0 d 10 sl

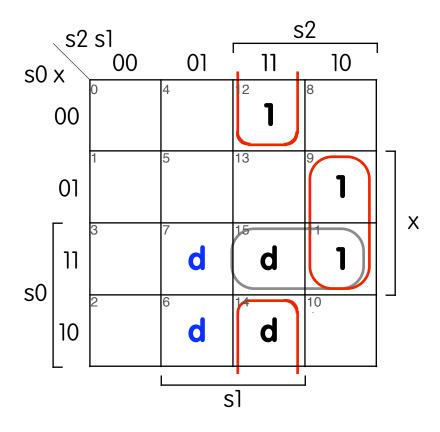


$$s0' = \bar{x}$$

$$s0' = \bar{x}$$

7-state





$$z = s2 \overline{s1} x + s2 s1 \overline{x}$$

$$z = s2 \overline{s1} x + s2 s1 \overline{x}$$

Improved Sequence Detector

Textbook formulas for the 6-state FSM:

$$s2' = s2 s0 + s1$$

$$s1' = \overline{s2} \overline{s1} x + s2 \overline{s0} x$$

$$s0' = \overline{s2} \overline{s1} \overline{x} + s0 x + s2 \overline{s0} + s1 x$$

$$z = s2 \overline{s0} x + s1 s0 x + s2 s0 \overline{x}$$

New formulas for the 6-state FSM:

$$s2' = (\overline{s0} + x) (s2 + s1 + s0)$$

$$s1' = \overline{s0} x$$

$$s0' = \overline{x}$$

$$z = s2 \overline{s1} x + s2 s1 \overline{x}$$

CHOICE OF FLIP FLOP

Excitation Tables

Each table
 shows the set tings that must
 be applied at the
 inputs at time t
 in order to
 change the out puts at time t+1.

D
flip-flop

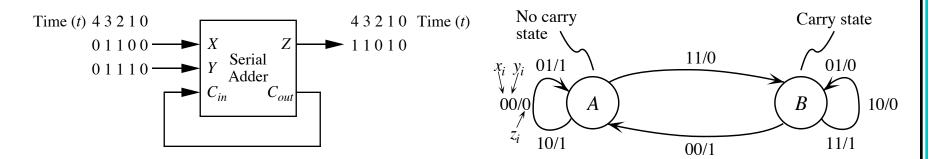
0 0 0
0 1 1
1 0 0
1 1 1

 $Q_t \ Q_{t+1}$

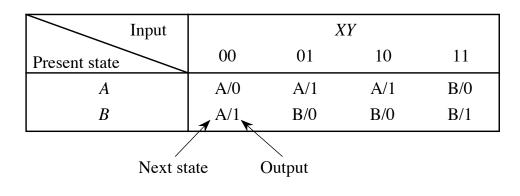
D

Q_t	Q_{t+1}	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

Serial Adder



 State transition diagram, state table, and state assignment for a serial adder.



Input		χ	ζY	
Present state (S_t)	00	01	10	11
A:0	0/0	0/1	0/1	1/0
B:1	0/1	1/0	1/0	1/1

Serial Adder Next-State Functions

 Truth table showing next-state functions for a serial adder for D, S-R, T, and J-K flip-flops. Shaded functions are used in the example.

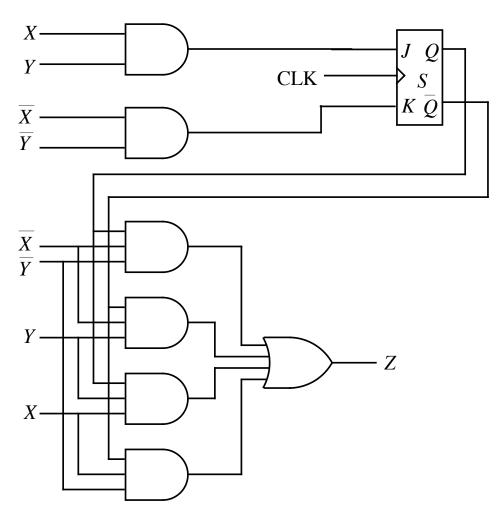
		resent State		(Set)	(Reset))			
X	Y	S_t	D	S	R	T	J	K	Z
0	0	0	0	0	0	0	0	d	0
0	0	1	0	0	1	1	d	1	1
0	1	0	0	0	0	0	0	d	1
0	1	1	1	0	0	0	d	0	0
1	0	0	0	0	0	0	0	d	1
1	0	1	1	0	0	0	d	0	0
1	1	0	1	1	0	1	1	d	0
1	1	1	1	0	0	0	d	0	1

J-K Flip-Flop Serial Adder Circuit

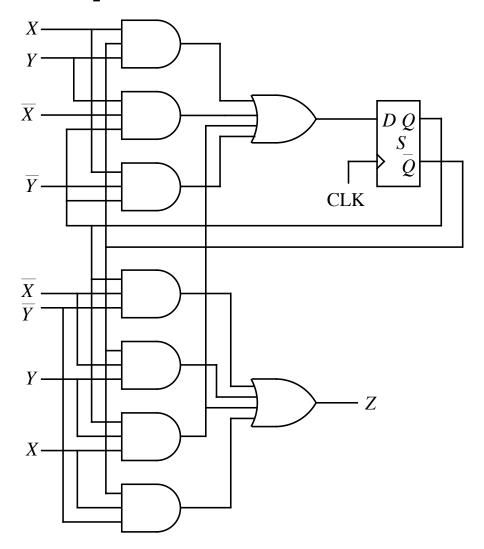
$$J = XY$$

$$K = \overline{X}\overline{Y}$$

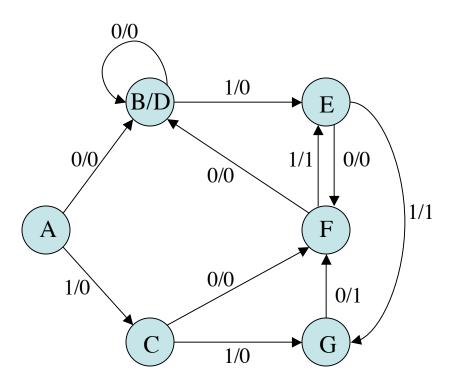
$$Z = \overline{X}\overline{Y}S + \overline{X}Y\overline{S} + XYS + X\overline{Y}\overline{S}$$



D Flip-Flop Serial Adder Circuit



CONSIDER FLIP FLOP CHOICE IN SEQUENCE DETECTOR



Sequence Detector State Assignment

7-state

	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	1	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d

$$A = 000$$
 $E = 100$ $B = 001$ $F = 101$ $C = 010$ $G = 110$ $D = 011$

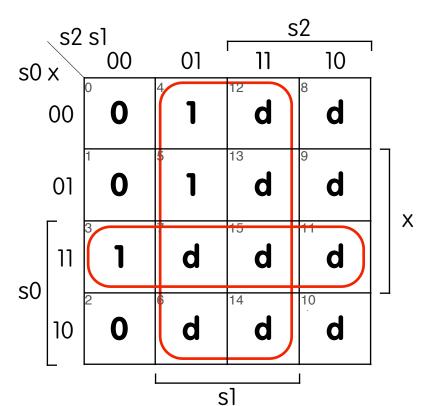
	s2	s1	s0	X	s2'	s1'	s0'	Z
0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	0	1	0
3	0	0	1	1	1	0	0	0
4	0	1	0	0	1	0	1	0
5	0	1	0	1	1	1	0	0
6	0	1	1	0	d	d	d	d
7	0	1	1	1	d	d	d	d
8	1	0	0	0	1	0	1	0
9	1	0	0	1	1	1	0	1
10	1	0	1	0	0	0	1	0
11	1	0	1	1	1	0	0	1
12	1	1	0	0	1	0	1	1
13	1	1	0	1	1	1	0	0
14	1	1	1	0	d	d	d	d
15	1	1	1	1	d	d	d	d

$$A = 000$$
 $E = 100$ $B/D = 001$ $F = 101$ $C = 010$ $G = 110$

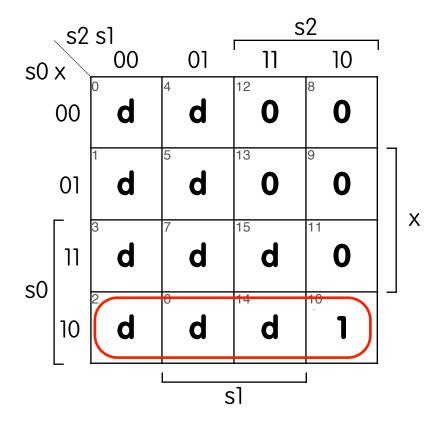
	s2	s1	s0	X	s2'	s1'	s0'	Z	j2	k2	j1	k1	j0	k0
0	0	0	0	0	0	0	1	0	0	d	0	d	1	d
1	0	0	0	1	0	1	0	0	0	d	1	d	0	d
2	0	0	1	0	0	0	1	0	0	d	0	d	d	0
3	0	0	1	1	1	0	0	0	1	d	0	d	d	1
4	0	1	0	0	1	0	1	0	1	d	d	1	1	d
5	0	1	0	1	1	1	0	0	1	d	d	0	0	d
6	0	1	1	0	d	d	d	d	d	d	d	d	d	d
7	0	1	1	1	d	d	d	d	d	d	d	d	d	d
8	1	0	0	0	1	0	1	0	d	0	0	d	1	d
9	1	0	0	1	1	1	0	1	d	0	1	d	0	d
10	1	0	1	0	0	0	1	0	d	1	0	d	d	0
11	1	0	1	1	1	0	0	1	d	0	0	d	d	1
12	1	1	0	0	1	0	1	1	d	0	d	1	1	d
13	1	1	0	1	1	1	0	0	d	0	d	0	0	d
14	1	1	1	0	d	d	d	d	d	d	d	d	d	d
15	1	1	1	1	d	d	d	d	d	d	d	d	d	d

Q	Q'	J	Κ
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

J2



K2

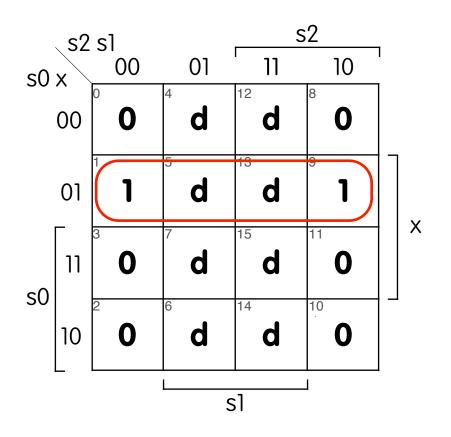


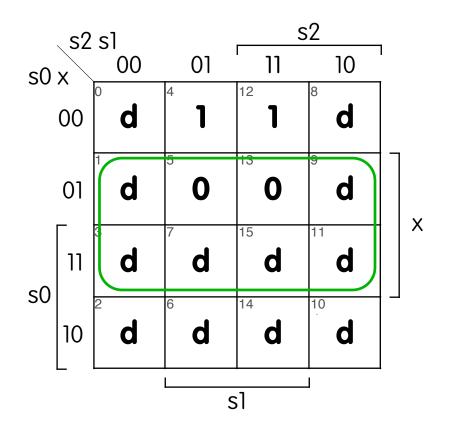
$$J2 = s1 + s0 x$$

$$K2 = s0 \bar{x}$$

J

K1



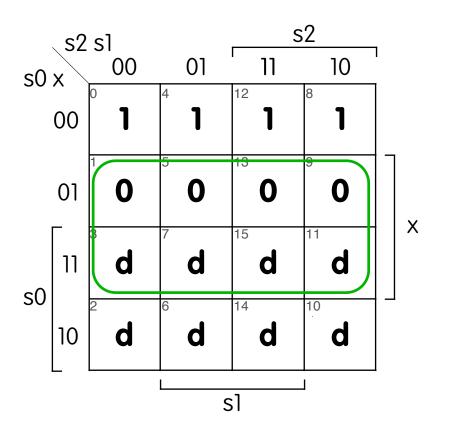


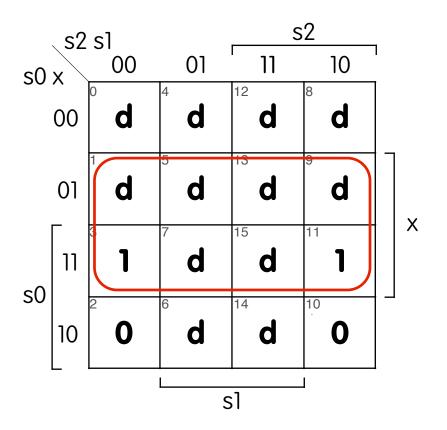
$$J1 = \overline{s0} x$$

$$K1 = \overline{x}$$

JO

K₀





$$J0 = \bar{x}$$

$$K0 = x$$

Improved Sequence Detector

Formulas for the 6-state FSM with D Flip-flops:

$$s2' = (\overline{s0} + x) (s2 + s1 + s0)$$

$$s1' = \overline{s0} x$$

$$s0' = \overline{x}$$

Formulas for the 6-state FSM with J-K Flip-flops:

$$J2 = s1 + s0 \times K2 = s0 \overline{x}$$

$$J1 = \overline{s0} \times K1 = \overline{x}$$

$$J0 = \overline{x} K0 = x$$

Sequence Dectector (J-K flip flops)

Output 1 when EXACTLY two of last three bits are 1

